Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Improvement of the cell performance in the ZnS/Cu(In,Ga) Se2 solar cells by the sputter deposition of a bilayer ZnO: Al film

Identifieur interne : 000B28 ( Main/Repository ); précédent : 000B27; suivant : 000B29

Improvement of the cell performance in the ZnS/Cu(In,Ga) Se2 solar cells by the sputter deposition of a bilayer ZnO: Al film

Auteurs : RBID : Pascal:13-0103322

Descripteurs français

English descriptors

Abstract

ZnS is a candidate to replace CdS as the buffer layer in Cu(In,Ga)Se2 (CIGS) solar cells for Cd-free commercial product. However, the resistance of ZnS is too large, and the photoconductivity is too small. Therefore, the thickness of the ZnS should be as thin as possible. However, a CIGS solar cell with a very thin ZnS buffer layer is vulnerable to the sputtering power of the ZnO: Al window layer deposition because of plasma damage. To improve the efficiency of CIGS solar cells with a chemical-bath-deposited ZnS buffer layer, the effect of the plasma damage by the sputter deposition of the ZnO: Al window layer should be understood. We have found that the efficiency of a CIGS solar cell consistently decreases with an increase in the sputtering power for the ZnO: Al window layer deposition onto the ZnS buffer layer because of plasma damage. To protect the ZnS/CIGS interface, a bilayer ZnO: Al film was developed. It consists of a 50-nm-thick ZnO: Al plasma protection layer deposited at a sputtering power of 50 W and a 100-nm-thick ZnO: Al conducting layer deposited at a sputtering power of 200 W. The introduction of a 50-nm-thick ZnO: Al layer deposited at 50 W prevented plasma damage by sputtering, resulting in a high open-circuit voltage, a large fill factor, and shunt resistance. The ZnS/CIGS solar cell with the bilayer ZnO: Al film yielded a cell efficiency of 14.68%. Therefore, the application of bilayer ZnO: Al film to the window layer is suitable for CIGS solar cells with a ZnS buffer layer.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0103322

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Improvement of the cell performance in the ZnS/Cu(In,Ga) Se
<sub>2</sub>
solar cells by the sputter deposition of a bilayer ZnO: Al film</title>
<author>
<name>DONG HYEOP SHIN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro</s1>
<s2>Yuseong-gu, Daejeon, 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Yuseong-gu, Daejeon, 305-701</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JI HYE KIM</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro</s1>
<s2>Yuseong-gu, Daejeon, 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Yuseong-gu, Daejeon, 305-701</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YOUNG MIN SHIN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro</s1>
<s2>Yuseong-gu, Daejeon, 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Yuseong-gu, Daejeon, 305-701</wicri:noRegion>
</affiliation>
</author>
<author>
<name>KYUNG HOON YOON</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Solar Energy Department, Korea Institute of Energy Research, 152 Gajeong-ro</s1>
<s2>Yuseong-gu, Daejeon, 305-343</s2>
<s3>KOR</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Yuseong-gu, Daejeon, 305-343</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Al Ammar, Essam A" uniqKey="Al Ammar E">Essam A. Al-Ammar</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Electrical Engineering, King Saud University, PO BOX 800</s1>
<s2>Riyadh 11451</s2>
<s3>SAU</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Arabie saoudite</country>
<wicri:noRegion>Riyadh 11451</wicri:noRegion>
</affiliation>
</author>
<author>
<name>BYUNG TAE ANN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro</s1>
<s2>Yuseong-gu, Daejeon, 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Yuseong-gu, Daejeon, 305-701</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0103322</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0103322 INIST</idno>
<idno type="RBID">Pascal:13-0103322</idno>
<idno type="wicri:Area/Main/Corpus">001192</idno>
<idno type="wicri:Area/Main/Repository">000B28</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1062-7995</idno>
<title level="j" type="abbreviated">Prog. photovolt.</title>
<title level="j" type="main">Progress in photovoltaics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bilayers</term>
<term>Buffer layer</term>
<term>Buffer system</term>
<term>Cadmium sulfide</term>
<term>Chemical bath deposition</term>
<term>Conversion rate</term>
<term>Copper selenides</term>
<term>Damaging</term>
<term>Fill factor</term>
<term>Gallium selenides</term>
<term>High voltage</term>
<term>Indium selenides</term>
<term>Metal coating</term>
<term>Open circuit voltage</term>
<term>Performance evaluation</term>
<term>Photoconductivity</term>
<term>Plasma deposition</term>
<term>Protective coatings</term>
<term>Protective layer</term>
<term>Quaternary compound</term>
<term>Shunt</term>
<term>Solar cell</term>
<term>Sputter deposition</term>
<term>Thick film</term>
<term>Thickness</term>
<term>Thin film</term>
<term>Window layer</term>
<term>Zinc oxide</term>
<term>Zinc sulfide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Evaluation performance</term>
<term>Cellule solaire</term>
<term>Dépôt pulvérisation</term>
<term>Bicouche</term>
<term>Revêtement métallique</term>
<term>Couche tampon</term>
<term>Photoconductivité</term>
<term>Epaisseur</term>
<term>Endommagement</term>
<term>Dépôt bain chimique</term>
<term>Dépôt plasma</term>
<term>Revêtement protecteur</term>
<term>Couche épaisse</term>
<term>Haute tension</term>
<term>Tension circuit ouvert</term>
<term>Facteur remplissage</term>
<term>Shunt</term>
<term>Taux conversion</term>
<term>Système tampon</term>
<term>Sulfure de zinc</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>Séléniure d'indium</term>
<term>Composé quaternaire</term>
<term>Oxyde de zinc</term>
<term>Sulfure de cadmium</term>
<term>Couche mince</term>
<term>Couche protectrice</term>
<term>ZnS</term>
<term>Cu(In,Ga)Se2</term>
<term>ZnO</term>
<term>CdS</term>
<term>Couche fenêtre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">ZnS is a candidate to replace CdS as the buffer layer in Cu(In,Ga)Se
<sub>2</sub>
(CIGS) solar cells for Cd-free commercial product. However, the resistance of ZnS is too large, and the photoconductivity is too small. Therefore, the thickness of the ZnS should be as thin as possible. However, a CIGS solar cell with a very thin ZnS buffer layer is vulnerable to the sputtering power of the ZnO: Al window layer deposition because of plasma damage. To improve the efficiency of CIGS solar cells with a chemical-bath-deposited ZnS buffer layer, the effect of the plasma damage by the sputter deposition of the ZnO: Al window layer should be understood. We have found that the efficiency of a CIGS solar cell consistently decreases with an increase in the sputtering power for the ZnO: Al window layer deposition onto the ZnS buffer layer because of plasma damage. To protect the ZnS/CIGS interface, a bilayer ZnO: Al film was developed. It consists of a 50-nm-thick ZnO: Al plasma protection layer deposited at a sputtering power of 50 W and a 100-nm-thick ZnO: Al conducting layer deposited at a sputtering power of 200 W. The introduction of a 50-nm-thick ZnO: Al layer deposited at 50 W prevented plasma damage by sputtering, resulting in a high open-circuit voltage, a large fill factor, and shunt resistance. The ZnS/CIGS solar cell with the bilayer ZnO: Al film yielded a cell efficiency of 14.68%. Therefore, the application of bilayer ZnO: Al film to the window layer is suitable for CIGS solar cells with a ZnS buffer layer.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1062-7995</s0>
</fA01>
<fA03 i2="1">
<s0>Prog. photovolt.</s0>
</fA03>
<fA05>
<s2>21</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Improvement of the cell performance in the ZnS/Cu(In,Ga) Se
<sub>2</sub>
solar cells by the sputter deposition of a bilayer ZnO: Al film</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>DONG HYEOP SHIN</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JI HYE KIM</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>YOUNG MIN SHIN</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KYUNG HOON YOON</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>AL-AMMAR (Essam A.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>BYUNG TAE ANN</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro</s1>
<s2>Yuseong-gu, Daejeon, 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Solar Energy Department, Korea Institute of Energy Research, 152 Gajeong-ro</s1>
<s2>Yuseong-gu, Daejeon, 305-343</s2>
<s3>KOR</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Electrical Engineering, King Saud University, PO BOX 800</s1>
<s2>Riyadh 11451</s2>
<s3>SAU</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>217-225</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26755</s2>
<s5>354000182553730090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0103322</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Progress in photovoltaics</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>ZnS is a candidate to replace CdS as the buffer layer in Cu(In,Ga)Se
<sub>2</sub>
(CIGS) solar cells for Cd-free commercial product. However, the resistance of ZnS is too large, and the photoconductivity is too small. Therefore, the thickness of the ZnS should be as thin as possible. However, a CIGS solar cell with a very thin ZnS buffer layer is vulnerable to the sputtering power of the ZnO: Al window layer deposition because of plasma damage. To improve the efficiency of CIGS solar cells with a chemical-bath-deposited ZnS buffer layer, the effect of the plasma damage by the sputter deposition of the ZnO: Al window layer should be understood. We have found that the efficiency of a CIGS solar cell consistently decreases with an increase in the sputtering power for the ZnO: Al window layer deposition onto the ZnS buffer layer because of plasma damage. To protect the ZnS/CIGS interface, a bilayer ZnO: Al film was developed. It consists of a 50-nm-thick ZnO: Al plasma protection layer deposited at a sputtering power of 50 W and a 100-nm-thick ZnO: Al conducting layer deposited at a sputtering power of 200 W. The introduction of a 50-nm-thick ZnO: Al layer deposited at 50 W prevented plasma damage by sputtering, resulting in a high open-circuit voltage, a large fill factor, and shunt resistance. The ZnS/CIGS solar cell with the bilayer ZnO: Al film yielded a cell efficiency of 14.68%. Therefore, the application of bilayer ZnO: Al film to the window layer is suitable for CIGS solar cells with a ZnS buffer layer.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Dépôt pulvérisation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Sputter deposition</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Bicouche</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Bilayers</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Revêtement métallique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Metal coating</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Revestimiento metálico</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Couche tampon</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Buffer layer</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Capa tampón</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Photoconductivité</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Photoconductivity</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Fotoconductividad</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Epaisseur</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Thickness</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Espesor</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Endommagement</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Damaging</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Deterioración</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Dépôt bain chimique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Chemical bath deposition</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Depósito baño químico</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Dépôt plasma</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Plasma deposition</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Depósito plasma</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Revêtement protecteur</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Protective coatings</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Revestimiento protector</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Couche épaisse</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Thick film</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Capa espesa</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Haute tension</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>High voltage</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Alta tensión</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Tension circuit ouvert</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Open circuit voltage</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Facteur remplissage</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Fill factor</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Shunt</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Shunt</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Shunt</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Taux conversion</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Conversion rate</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Factor conversión</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Système tampon</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Buffer system</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Sistema amortiguador</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Sulfure de zinc</s0>
<s5>22</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Zinc sulfide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Zinc sulfuro</s0>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Composé quaternaire</s0>
<s5>26</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Quaternary compound</s0>
<s5>26</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Compuesto cuaternario</s0>
<s5>26</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>27</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>27</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>27</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Sulfure de cadmium</s0>
<s5>28</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Cadmium sulfide</s0>
<s5>28</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Cadmio sulfuro</s0>
<s5>28</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>29</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>29</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>29</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Couche protectrice</s0>
<s5>30</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Protective layer</s0>
<s5>30</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Capa protectora</s0>
<s5>30</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>ZnS</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>Cu(In,Ga)Se2</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="31" i2="X" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="32" i2="X" l="FRE">
<s0>CdS</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fC03 i1="33" i2="X" l="FRE">
<s0>Couche fenêtre</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="33" i2="X" l="ENG">
<s0>Window layer</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>077</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B28 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000B28 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0103322
   |texte=   Improvement of the cell performance in the ZnS/Cu(In,Ga) Se2 solar cells by the sputter deposition of a bilayer ZnO: Al film
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024